--import pandas as pd
import numpy as np
import requests
import wbgapi as wb
import matplotlib.pyplot as plt
import seaborn as sns
import lightgbm as lgb
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_absolute_error, r2_score
from functools import reduce

--- 1. Data Acquisition ---
GHO_API_URL = "https://ghoapi.azureedge.net/api/"
WHO_INDICATORS = ["NCDMORT3070", "NCD_BMI_30A", "SA_0000001400", "WHOSIS_000004"]

def fetch_gho_data(indicator_code):
 """Fetches data for a specific indicator from the WHO GHO API."""
 try:
 response = requests.get(f"{GHO_API_URL}{indicator_code}")
 response.raise_for_status()
 data = response.json()["value"]
 print(f"Successfully fetched {indicator_code}.")
 return pd.DataFrame(data)
 except Exception as e:
 print(f"Error fetching {indicator_code}: {e}")
 return None

who_data_frames = [fetch_gho_data(indicator) for indicator in WHO_INDICATORS]

try:
 print("\nFetching World Bank indicator data...")
 gdp_df = wb.data.DataFrame('NY.GDP.PCAP.CD', time=range(2000, 2020)).reset_index().melt(id_vars=['economy'], var_name='Year', value_name='gdp_per_capita')
 health_df = wb.data.DataFrame('SH.XPD.CHEX.PC.CD', time=range(2000, 2020)).reset_index().melt(id_vars=['economy'], var_name='Year', value_name='health_expenditure')
 wb_indicators_data = pd.merge(gdp_df, health_df, on=['economy', 'Year'], how='inner')
 wb_indicators_data.rename(columns={'economy': 'Country'}, inplace=True)
 wb_indicators_data['Year'] = wb_indicators_data['Year'].str.replace('YR', '').astype(int)
 print("Successfully fetched and processed World Bank indicator data.")
except Exception as e:
 wb_indicators_data = None

--- 2. Data Processing and Feature Engineering ---
if all(df is not None for df in who_data_frames) and wb_indicators_data is not None:
 processed_who_dfs = []
 for i, df in enumerate(who_data_frames):
 if 'Dim1' in df.columns and 'BTSX' in df['Dim1'].unique():
 df = df[df['Dim1'] == 'BTSX'].copy()
 df_agg = df.groupby(['SpatialDim', 'TimeDim'])['NumericValue'].mean().reset_index()
 df_agg.columns = ["Country", "Year", WHO_INDICATORS[i]]
 processed_who_dfs.append(df_agg)

 merged_who_data = reduce(lambda left, right: pd.merge(left, right, on=["Country", "Year"], how="inner"), processed_who_dfs)
 base_data = pd.merge(merged_who_data, wb_indicators_data, on=["Country", "Year"], how="inner")
 base_data.rename(columns={'NCDMORT3070': 'ncd_mortality', 'NCD_BMI_30A': 'obesity', 'SA_0000001400': 'alcohol', 'WHOSIS_000004': 'smoking_prevalence'}, inplace=True)

 cols_to_numeric = list(base_data.columns)
 cols_to_numeric.remove('Country')
 for col in cols_to_numeric:
 base_data[col] = pd.to_numeric(base_data[col], errors='coerce')
 base_data.dropna(inplace=True)

 base_data.sort_values(by=['Country', 'Year'], inplace=True)
 base_data['target_mortality_3y_ahead'] = base_data.groupby('Country')['ncd_mortality'].shift(-3)

 predictor_cols = ['obesity', 'alcohol', 'smoking_prevalence', 'gdp_per_capita', 'health_expenditure']
 for col in predictor_cols:
 base_data[f'{col}_lag1'] = base_data.groupby('Country')[col].shift(1)
 base_data[f'{col}_trend3y'] = base_data.groupby('Country')[col].diff(3)
 base_data['year_feature'] = base_data['Year']

 final_df = base_data.dropna().copy()
 final_df.set_index(['Country', 'Year'], inplace=True)

 # --- 3. Prepare Data for Modeling (Train-Test Split) ---
 features = [col for col in final_df.columns if col != 'target_mortality_3y_ahead' and col not in predictor_cols and col != 'ncd_mortality']
 target = 'target_mortality_3y_ahead'
 split_year = 2015
 train_df = final_df[final_df.index.get_level_values('Year') < split_year]
 test_df = final_df[final_df.index.get_level_values('Year') >= split_year]
 X_train, y_train = train_df[features], train_df[target]
 X_test, y_test = test_df[features], test_df[target]

 # --- 4. Hyperparameter Tuning for LightGBM ---
 print("\n--- Performing Hyperparameter Tuning ---")
 lgbm = lgb.LGBMRegressor(random_state=42)
 param_grid = {
 'n_estimators': [100, 200],
 'learning_rate': [0.05, 0.1],
 'num_leaves': [31, 40],
 }
 grid_search = GridSearchCV(estimator=lgbm, param_grid=param_grid,
 cv=3, n_jobs=-1, verbose=1, scoring='neg_mean_absolute_error')
 grid_search.fit(X_train, y_train)
 print(f"Best parameters found: {grid_search.best_params_}")
 best_lgbm = grid_search.best_estimator_

 # --- 5. Model Training and Evaluation ---
 lr_model = LinearRegression().fit(X_train, y_train)
 lr_predictions = lr_model.predict(X_test)
 lr_mae = mean_absolute_error(y_test, lr_predictions)
 lr_r2 = r2_score(y_test, lr_predictions)

 lgb_predictions = best_lgbm.predict(X_test)
 lgb_mae = mean_absolute_error(y_test, lgb_predictions)
 lgb_r2 = r2_score(y_test, lgb_predictions)

 print("\n--- Final Model Performance ---")
 print(f"Baseline Linear Regression -> MAE: {lr_mae:.3f}, R²: {lr_r2:.3f}")
 print(f"Tuned LightGBM Model -> MAE: {lgb_mae:.3f}, R²: {lgb_r2:.3f}")

 # --- 6. Interpretation and Visualization ---

 # Figure 1: Predicted vs. Actual Plot
 plt.figure(figsize=(8, 8))
 sns.scatterplot(x=y_test, y=lgb_predictions, alpha=0.6)
 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], '--', color='red', lw=2)
 plt.xlabel('Actual NCD Mortality', fontsize=12)
 plt.ylabel('Predicted NCD Mortality', fontsize=12)
 plt.title('Figure 1: Predicted vs. Actual Values on Test Set', fontsize=14, pad=20)
 plt.show()

 # Figure 2: Feature Importance Plot
 feature_importance_df = pd.DataFrame({'feature': X_train.columns, 'importance': best_lgbm.feature_importances_}).sort_values('importance', ascending=False)
 plt.figure(figsize=(10, 8))
 sns.barplot(x='importance', y='feature', data=feature_importance_df, palette='viridis')
 plt.title('Figure 2: Feature Importance for Predicting NCD Mortality', fontsize=16, pad=20)
 plt.xlabel('Importance Score', fontsize=12)
 plt.ylabel('Feature', fontsize=12)
 plt.tight_layout()
 plt.show()
else:
 print("\nOne or more base datasets could not be created. The script has terminated.")

